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A set of constitutive equations is derived to describe the time-dependent flow of 
a dilute suspension of identical rigid particles of arbitrary shape which are influenced 
by Brownian couples. The form of the orientation probability distribution for small 
departures from isotropy is found. The case of weak flows with strong Brownian 
effects is studied in detail, and the viscoelastic approximation and second-order-fluid 
limit of the constitutive equation are derived for a general particle shape. A full 
numerical solution is given for ellipsoids. The general nearly spherical particle is also 
considered and constitutive equations for general flow strengths are obtained for this 
case. 

1. Introduction 
The first systematic study of the rheology of a dilute suspension of identical particles 

sufficiently small to be affected by Brownian motions would seem to be that by Giesekus 
(1962). In  his paper he considers a dilute suspension of spheroids (i.e. ellipsoids with 
an axis of symmetry) and examines in detail the situation in which Brownian effects 
play a dominant, role. In  a series of papers, Leal and Hinch have extended the analysis 
to cover also the cases of weak Brownian motion (Leal & Hinch 1971; Hinch & Leal 
1973), an intermediate regime of weak Brownian motion (Hinch & Leal 1972) and the 
entire range of flow strengths for nearly spherical particles (Leal & Hinch 1972). In  
every case, attention is confined to spheroidal particle shapes. The purpose of this 
paper is to develop a description which is not restricted to axially symmetric particles, 
and which will enable particles of a general shape to be treated. 

Throughout we shall be concerned with identical, rigid, force-free particles in 
a suspension which is dilute and spatially homogeneous. Thus hydrodynamic inter- 
actions between the particles will be neglected, and there will be no Brownian forces 
tending to change the particle concentration in physical space. In  fact, owing to the 
coupling between translation and rotation for, say, a screw-shaped particle, it is not 
apriori clear that we can ignore the translation of the particles. An order-of-magnitude 
argument demonstrates that the rotational effects are significantly larger than the 
translational ones, however (see the note at the end of $2.2), and therefore in what 
follows we shall concern ourselves with them only. 

The particles will be taken to be sufficiently small for the Brownian couples on them 
to produce significant effects, and in consequence all physically reasonable motions 
of the suspension will correspond to a Reynolds number based on particle size which 
is small. The suspending fluid is taken to be Newtonian. 
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The paper is divided into five main sections. In  $ 2 we construct the basic apparatus 
needed to handle the orientation statistics €or a general body. In  $3 this is applied to the 
case in which the distribution is nearly isotropic, and in $54 and 5 explicit forms are 
given for the ' linear viscoelastic ' and ' second-order-fluid ' regimes. Numerical com- 
putations of these formulae for the particular body shape of an ellipsoid (with no 
symmetry) are given in $6, and finally, in Q 7, we consider the general near-sphere limit 
for the particle shape. 

We do not discuss here particular flows of the suspension. The spirit of this paper 
is to indicate how the constitutive equation constructed for the suspension is connected 
with the more general phenomenological theories of complex materials. Also we make 
no apology for assuming that the tensors which characterize the motion of a particle 
in a linear flow are known. The problem of finding these for a general body shape is 
formidable, and outside the scope of this paper. 

2. Basic formulation 
2.1. Orientation statistics 

The assumption of diluteness means that each particle of the suspension can be con- 
sidered independently. In  order to treat the microstructural kinematics, therefore, 
we need find only a method of describing the orientation of a single particle. Almost 
all previous studies of Brownian rotations have restricted attention to axisymmetric 
particles, for which the orientation statistics can conveniently be given in terms of 
a unit vector along the symmetry axis. Brenner (1967) discusses the Brownian motion 
of particles of a general shape. (He derives formulae for both the Brownian force and 
the Brownian couple on a particle: we shall be concerned only with the couples here.) 
His Euler-angle representation of orientation is, however, exceedingly cumbersome 
and use of such a representakion produces results which are complicated (see Workman 
& Hollingsworth 1969) and difficult to extend to such problems as the one described 
here. 

The method that we employ to specify the current orientation of a particle is to 
give the rotation matrix Ria from some reference configuration to its present orienta- 
tion. We adopt the convention that tensors to be evaluated in the reference state 
shall have Greek suffixes, while Latin suffixes are used in the current state. Thus as 
the particle rotates in response to the hydrodynamic forces on it, so the rotation matrix 
also changes. In  other words, in the space of all possible linear transformations from 
one co-ordinate system to another, which in general involve stretches and rotations, 
we are concerned with the three-dimensional subspace represented by all orthogonal 
matrices R . RT = I. There is a large degree of redundancy in this representation of 
orientation space: R has nine components while the space considered requires only 
three; nevertheless this proves to be very much easier to handle than the Euler-angle 
representation, which uses just three variables. 

Where the effects of Brownian motion are important, the orientation of any given 
particle of the suspension is only statistically determinate. We introduce an orienta- 
tion probability distribution function JV( R, t )  so that JVd7 gives at  time t the propor- 
tion of particles whose orientations lie within a small region d7 of that specified by R. 
(d7 can here be thought of as any convenient way of labelling a small volume of orienta- 
tion space.) 
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.N is normalized : 

N d r  = I for all t .  s orientations 

It must also satisfy a conservation law in orientation space: 

axpt+v.s = 0, (2.2) 

where F is the probability flux vector in orientation space and V is the gradient 
operator in that space. The problem of finding an explicit representation of the V 
operator is treated in appendix A. It is shown there that, iff is any scalar function of 

It is further demonstrated that (2.3) is valid irrespective of whether alaR is interpreted 
as a projection of a nine-dimensional gradient in the space of all linear transformations, 
or as a gradient defined only in our three-dimensional subspace. 

2.2. The particle material tensors 
With the assumption of diluteness, we may consider each particle of the suspension 
separately: as if it were in unbounded fluid with a prescribed velocity gradient at 
infinity. If, further, the particles are so small that on the microscale the Stokes 
equations are applicable, then as discussed by Hinch (1972), with some sign changes, 
linearity gives that 

X P Q U - U  (%) ;).(wE+ (2.4) 

where F, L and S are the force, couple and stresslet exerted by the particle on the 
fluid, p is the ambient fluid viscosity, V the volume of the particle, (u - U) and 
(w - SZ) its velocity and angular velocity relative to those of the fluid at infinity, and 
E the symmetric part of the velocity gradient a t  infinity. The matrix of (tensor) 
coefficients is determined by the size and external shape of the particle. It is symmetric 
and positive definite. Nir, Weinberger & Acrivos (1975) construct variational 
bounds for the material tensors that appear. They also discuss the additional internal 
symmetries of the tensors which are the elements of the matrix. The evaluation of the 
six unknown tensors is achieved by the solution of appropriate low Reynolds number 
problems for the particle. For the most part we shall assume that these tensors are 
known, but in Q 7 an explicit determination for nearly spherical particles will be made. 
A recent paper by Youngren & Acrivos (1975) indicates a scheme by which they may 
be found numerically. 

Throughout we shall be concerned with force-free particles with no external couples 
except those due to thermal agitations. We are interested in two effects: the particle 
angular velocity and the stresslet produced by the particle. By linearity we may add 
the separate contributions to these from the Brownian couples and the fluid straining 
motion at infinity. Thus we write 

0 = wB+wH, s = S B + S H .  (2.5) 

These two contributions are now considered separately. 
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Contribution from Brownian effects. As discussed by Brenner (1967) and Brenner & 
Condiff (1972)) by an extension of Einstein's original argument the random Brownian 
couples may be replaced by an effective entropic couple: 

LB = - kTV log N. 
As the particles are force-free, F = 0 and u - U = - X - l .  P . wB, so that 

wB = - DM . V lOgM, (2.6) 

where D = kT/6pV,  M = S(Y-P' .X- l .P)- l .  (2.7) 

The non-dimensionalized mobility tensor M is independent of the size of the particle 
and 11 M 11 is O( 1) except for extreme body shapes. M = I for a sphere. Also, 

SB = ~ ~ V D B ' . V ~ O ~ M ,  
where 

Bjpq = - 2(Y - P' . x-' . P)&' (R - P' . x-'. Q)kpq,  (2.8) 

and BLij = B i j k .  

B is symmetric and traceless in its last two suffixes. It is, in fact, the tensor intro- 
duced by Bretherton (1  962). 

Contribution from the straining motion. Similarly, for the hydrodynamic contribu- 

(2.9) 

(2.10) 

tion we obtain 

where 

The particle tensor C is (essentially) that used by Batchelor (1970~) .  C is symmetric 
and traceless with respect to both its first and its second pair of suffixes. It is also 
symmetric under interchange of these pairs. 

Note on the coupling between translation and rotation. In  view of the coupling tensor P, 
which is non-zero for screw-like particles, the Brownian rotation of the particles induces 
an additional translational velocity. It may then be thought that an additional term 
should appear in the probability conservation equation (2.2)) viz. (a/ax). (MuB). The 
following dimensional argument shows that this term is small in comparison with the 
rotational term (a /aO).  (MuB). If 1 is a particle length scale and L a macroscopic 
scale then JwBI = O(D) ,  and so (uBI = O(D1). Hence I(a/ax).(MuB)I = O(Dl/L) 
while I (a/aO). (MwB)I = O(U), which is larger by a factor O(L/l) .  Now our underlying 
assumption throughout has been that l/L is small, and therefore to  the.accuracy of 
our averaging procedure the translation term is negligible. Note also that concentra- 
tion gradients in physical space produce Brownian forces whose effects are similarly 
an order of magnitude smaller than those we have included. 

wH = Q + + B :  E, SH =pVC: E, 

Cijlm = Z i j l m -  Q i j p X i 2  QMm + S(Rijs- Q i j p X G i  Pks)  B8lm* 

2.3. The form of the particle stress 

The stresslet exerted by just one particle on the fluid has now been derived as 

S = 3pVDB'.VlogN+pVC: E. 
As shown by Batchelor ( 1 9 7 0 ~ )  equation 5.16)) the total particle stress in a dilute 
suspension of total volume V, whose statistics are determinate is 
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Here the sum must be replaced by an average over orientations giving 

iy$$) = 3p.D@((~+ B').VlogN)+p@(C): E, 
where Q, is the volume concentration of particles and for any quantity $ we define 

($r) = 1 $ N d T .  (2.11) 
orientations 

Now, in the first term, 

((E + B') . V log N) = J (E + 6'). V N d T  
= J V . [ N ( e +  B ) ] ~ T -  J N V . ( E +  6 ) d ~ .  

But .N is a single-valued function of orientation and so the first integral vanishes by 
the divergence theorem and hence 

The noted symmetries of B and C ensure that the stress tensor is symmetric. This was 
to be expected, since no external couple acts on the suspension as a whole, and the 
random Brownian couples can make no systematic contribution to an antisymmetric 
bulk stress. 

6@) = - ~ , u D Q , ( V . B ) + ~ @ ( C ) :  E. (2.12) 

We can use (2.3) to evaluate V .  B :  
V . B  = -ZF, (2.13) 

where 
K j  = $(%kl Bkjl + 'kjl Bkil)* (2.14) 

Note that F is a symmetric traceless tensor depending only on the particle shape. 
Further, Ej = Ria RjPF!&, where Fo is independent of R. We may thus put 

(F) = (R.R)F", 
with FO evaluated in the reference state. ( C )  may be dealt with similarly. We thus 
obtain the result 

38' = 2p@{3DF&q(RiaRjp) + $C8,q,s(RiaRjaR,,R1,) -@ki}* (2.15) 

The f i s t  contribution here is the diffusion stress, while the second arises from the 
ambient straining motion. 

2.4. Derivation of the Fokker-Planck equation 
We see from (2.15) that in order to calculate the bulk stress it suffices to know N so 
as t o  be able to evaluate the second and fourth moments. The evolution of N is 
governed by (2.2) with the probability flux 9 = No = N(aB+ aH). The probability 
conservation equation thus becomes by (2.6), 

(2.16) 

This is the appropriate form of the Fokker-Planck equation for the problem. It is 
clear that the two contributions to o represent advection and diffusion o f N i n  (2.16). 

As before we can use (2.3) t n  give an explicit representation of the V operator in 
(2.16). On writing SZ = - #E : a, where a is the antisymmetric vorticity tensor, and 
giving the suffixes in full, this becomes 

+ V .  (NSZ + &NB : E) = DV. (M .ON). 

9 Q L M  84 
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Equations (2.15) and (2.17) together provide the constitutive equation for the 
suspension. In  principle, given some initial conditions for M a n d  a prescribed E ( t )  and 
f i ( t ) ,  which may themselves be derived from the solution of an appropriate boundary- 
value problem, (2.17) can be integrated forwards in time to give a new M(t) and, 
through the angle averages in (2.15), a new a. Clearly, in general this is a formidable 
task. In  order to make further analytic progress, we restrict attention from 5 3 onwards 
to situations in which the orientation statistics are approximately uniform, and thus 
consider only small departures from the isotropic, Newtonian fluid structure. 

We note in passing that some progress can be made in the general problem by means 
of a method of moments. In  appendix C a useful exact result for the second moment of 
M in terms of the fourth moment is obtained. As usual in a moment technique, some 
truncation procedure for the progressively higher moments which arise is necessary 
to provide a closed system of equations. 

3. Nearly isotropic orientation distributions 
There are two circumstances in which we may expect a priori that to lowest order 

the orientations of the particles will be randomly distributed: fist where Brownian 
effects play a dominant role, and second where the particles are nearly spherical and 
the flow is not exceptionally strong. In  either case then, M N constant = 1/8mr2 by 
virtue of the normalization (2.1). We now consider the smallest perturbation from this 
case. Letting y be a typical strain rate, in the former case we may define E = y / D  < 1. 
In the latter case, if E < 1 is a measure of the non-sphericity of the particles, then 
B and hence F are each O(s) .  Hence expanding 

M = 1/8+ + €4 + 0 ( € 2 ) ,  (3.1) 

substituting in (2.17) and retaining O(s)  terms gives 

where the right-hand side is O(1). (In the former case, llfill is O(y)  and so the second 
term is also negligible to this order.) 

Now the right-hand-side forcing in (3.2) may be written as Eij Ria Rja F&/8n2s. This 
suggests the substitution 

where d is independent of R, in close analogy with the near-sphere problem of Leal & 
Hinch (1972). Now in order to preserve the normalization we require / 4 d r  = 0, so 
noting that /RiaRjrdr = 8m2SiiSas (see appendix A), it  suffices that diiaa = 0. In  
fact we suppose that 

and verify a posteriori that these conditions are preserved by the equation for the 
time evolution of d. 

The algebra involved in substituting (3.3) in (3.2) is tedious but straightforward and 
leads to the equation 

4 = (1/8+) d i j a a ( t )  RiaRjp, (3.3) 

atijaa = = Atijaa, diiaS = dijaa = 0 (3.4) 

where K-l is defined by (C 2). 
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It is easy to verify that this equation does preserve the symmetries (3 .4)  assumed 
f o r d .  Further, as all the terms appearing in (3.5) are independent of R, the quadratic 
form a.ssumed for Xl in (3 .3 )  is shown to be appropriate. By comparison with the 
analogous quadratic formula obtained by Leal & Hinch (1972) it is clear that, just as 
we can accommodate the greater complexity of non-axisymmetric bodies by use of 
a matrix R rather than a vector p, so we can specify the 'shape' of the probability 
distribution by the fourth-rank quantity d rather than their second-rank tensor A.  

A particularly simple form of (3 .5 )  arises when, to sufficient accuracy, the diffusion 
tensor is isotropic, i.e. 

which is found to be the case for nearly spherical particles and axisymmetric disks. In  
that case we may take dijap = iAi jF$p (if F + 0) and we then obtain 

(3 .7 )  

where the Jaumann derivative 9A/9 t  = aA/at + A .  a - a. A .  Equation (3 .7 )  is 
identical to equation ( 5 )  of Leal & Hinch (1972),  thus showing that for small departures 
from isotropy the orientation-space probability distribution for any nearly spherical 
particle shape is essentially the same as for axisymmetric near-spheres. 

To complement (3 .5 )  we need also the form of the stress in the nearly isotropic case. 
The angle averages appearing in (2 .15)  may now be computed correct to O(e)  from 
the known form for XI. For instance (R . R) = (R. R), + E( R . R) ,  + 0 ( s 2 )  (where by 
the notation (+)n  we mean I $ X n d r ,  n = 0 , 1 , 2 ,  ...), and so from the results of 
appendix A, 

and 

M = I + O(s), (3 .6)  

.9A/9t + 6 D A  = 3Ee-1, 

(Ria Rjp) = Qaijaap + & 4 i a p  i- O(c2), 

<Ria Rjjl Rky R18) Elcl = i h E i j [ -  2aa.8ay8 + 3(6aya,88 + sa88py)l  

+ he{' 6 ( E i n 4 ' n p y  &a8 + Ein4 'np8  say) + 2 ( E i n g ' n a y  &IS 

+ Ein4na8S ,8y )  - 1 2 ( E i n 4 n y 8 a a p  + E i n 4 n a a  &yYb)) 

+ {same terms with i ,  j interchanged} +isotropic terms + 0 ( c 2 ) .  

Care must be taken to retain consistently the important terms in (2.15),  however, 
for when Brownian effects are dominant, the diffusion stress is apparentIy O(s-1) 
greater than the hydrodynamic stress. We therefore restrict attention to this case 
first, and return to the near-sphere case in Q 7 .  

4. The limit of linear viscoelasticity 
Here we take very weak flows but place no restriction on their time variation. Thus 

E = y / D  < 1 and O(E) terms are negligible. It follows that the probability distribution 
will adjust to changes on a time scale D-l. Thus if we non-dimensionalize E and fi 
with respect to y, and t with respect to D-' then (3.5) becomes 

and to this order of approximation 

Now as (4 .1 )  is a linear equation, it can be solved by standard normal-mode techniques: 
the problem is that of diagonalizing K-l ,  resolving d and the right-hand side of (4 .1)  

14-2 
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N # N )  T ( N )  T N i t  

1 4(D1+ D2+ D3) dieg (D2D3, DsD1, DID2) diag(l , i ,  1) 

2 ,3$ 2(D1+ D2 + D3) f k diag (TI!), cyclic diag (D'T$, 
permut,ations) cyclic 

permutations) 

4 4(D1 + D2 + 0 3 )  (.. -u' I) ( - i  ; I) 
5 40' + D2 + Ds (i r I) (4. I) 
6,s 

7 ,9  

$ Where 

Obtained from 4 by cyclic permutation 

Obtained from 5 by cyclic permutation 

T$) = C2D' + 2 0 . -  4Ds T k] [2D3 + 2 0 ' -  4 0 .  T k ]  

and k2 = 2[(D1 - D')'+ (D2 - D3)'+ (0'- D')']. 

TABLE 1. Spectrum of relaxation times and weight functions for the linear viscoelastic regime. 

along the eigentensors of K-l and thus, with an exponential time dependence for each 
normal mode, obtaining d. Details may be found in Rallison (1976) and are available 
from the author on request. Then on substituting in (4.2) we have 

where the memory function m is given by 
9 

N = l  
m(E) = zdN)exp ( - A(NYJ. (4.4) 

The weights dN) are forced by F, so that 

(4.5) 

where TcN) and T(M+ are respectively the eigentensor and adjoint eigentensor of K-l 
corresponding to the eigenvalue h(w. In  table 1 this diagonalization of K-l is shown 
for a general mobility tensor M whose eigenvalues are Di, i = 1,2 ,3 .  

From the form of the T(N) it  will be seen that, since Fo is symmetric and traceless, 
udN) vanishes for N = 1 ,4 ,6  and 8. Thus in general the suspension will display five 
distinct relaxation times in the linear regime. Where the particles are orthotropic, 
however, the further symmetry of F(0) implies in addition that w ( ~ )  = 0 for N = 3, 5 
and 7 and so only two time scales are apparent. Finally, in the degenerate case in 
which the particles are axisymmetric rotation about the symmetry axis (say the ' 1 ' 
axis) is irrelevant, and so only one diffusion coefficient can appear. In  this final case 
there is just one relaxation time, 6D2 ( = 6D3), and either d2) or w ( 3 )  is zero (depend- 
ing on the choice of degenerate eigenvectors). 

It is therefore possible to distinguish between different shapes of suspended rigid 
particles by observation of the linear relaxation spectrum. Further, we can compare the 
result here with the earlier literature concerning simple deformable particles (see, for 
instance, Lodge & Wu 1971; or the review article of Williams 1975). It is known that, 

w(N)  = :( FO : T ( M )  (FO : T ( N ) t ) / ( T ( N )  : T ( N ) t ) ,  
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for Rouse-Zimm type models of systems with large numbers of internal degrees of 
freedom, more than five time scales appear, corresponding to the various modes of 
deformation. It follows, then, that at this level rigid and deformable particles can be 
distinguished. 

To facilitate comparison of the form of u with the polymer literature, it is convenient 
to write (4.3) and (4 .4 )  in terms of a complex viscosity p* which gives the ratio of u 
and 2E when each varies as eiwt. Clearly, 

This is very similar to comparable results for Rouse-Zimm chains (except that the 
second term becomes a sum over many more modes) but with the crucial difference 
that the first term does not appear in most such analyses. Thus in the high frequency 
limit, w + 00, we here predict a non-zero contribution to the viscosity of the suspension 
from the presence of the solute. It arises because the form of the hydrodynamics used 
here has incorporated a finite particle size, rather than a point friction force. Its 
appearance is necessary to explain many of the high frequency data obtained from 
dilute polymer solutions (see Fixman & Evans 1976). 

5. The second-order-fluid limit 
Here we again consider weak flows, though not so weak as in the viscoelastic limit. 

The further demand however is made that time variations are slow. With E and 
non-dimensionalized with respect to y, and t scaled by y-1, we may take E = y /D < 1 
and (2.15) becomes 

'%) = 2p@y{3Ft,9(Ria Rjp)l + #Epqcpy8(Ria Rj,6RpyRq8)0 

+ c[3(RiaRjj3)ZFx,9 + $Epqc:,9y8(RiaRjfi Rpy 'q8)lI + o(E2) ) *  (5*  ') 

Also, (3 .5)  becomes K;iy8di jy8 = EijF$. Hence by inverting K-l by means, say, of 
the diagonalization discussed in 5 4 ,  we obtain 

&ija,9 Kapy8 '!8 E i j y  ( 5 .2)  

G&9 = K a p y 8  F!8 (5.3) 

where we require K;-fivKfivy8 = i ( d a y  dp8 + Sa8 if,, - @abd,,8). It is convenient to write 

so that G is another symmetric traceless tensor determined solely by the particle 
shape. 

We are now in a position to compute all the averages in (5.1) with the exception 
of (RR),. This could be found indirectly via an equation and solution for 4. In  
this case, however, it  is much easier to use the second-moment equation of appendix C, 
which becomes at O ( E ~ ) ,  with our non-dimensionalization, 

K$a,9<Ria Rj,?)Z = - R t 8 ) l l a t  + O ~ m < ~ m y  ' t8)l-  nmt(Rsy Rm8)l 

- #€a,,BO,Be(Rs,RteRp8Rqe)i Epq - #eafi8E,90(Rsy Rtfi R p p  Rqo)iEpq, 

N!8 = +'a,9yB!,9fiG!8 +eap8B0",9yG!fi +Ea@8B2/? f iG~y  (5 .4 )  

where the ( )1 averages on the right-hand side are known from (5 .2 )  .Writing 
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so that N is another symmetric tensor determined by the particle shape, and com- 

. . ", 
and so finally 

where the constants ci are determined from the particle tensors as follows: 

6") = 2p@~y{ciE + S [ C ~  gE/.9t + c ~ ( E .  E - 4 E  : El)] + O(S')), (5.5) 

Equation (5.5) is a constitutive equation of the well-known second-order-fluid form. 
Note that, as the coefficients which appear are scalars, they are independent of our 
choice of particle reference axes, as indeed they must be. We may characterize such 
a fluid by its behaviour in steady simple shear, for which 

(5.7) I c12 = ,U@YCl, 
~ 1 1 -  ~ 3 3  = - c2 + &g) p@yZN1/D, 
U2, - U33 = p@y€(c, + 4 4  = p@y2Nz/D. 

The viscometric functions c l ,  Nl and N2 depend only on the particle shape. These 
results are a generalization of those of Giesekus (1962) for spheroids. 

Once again a comparison of this result with that of previous workers on flexible- 
particle suspensions can be made. Since the second-order-fluid behaviour is deter- 
mined solely by the three constants c,, Nl and Nz it is clear that experimental 
determination of these can provide little precise information concerning the particles 
of the suspension. We note, however, that, in all cases where the hydrodynamics of 
a particle (flexible or rigid) has been treated by regarding its effect as a set of non- 
interacting point forces on the fluid, N, vanishes (0.g. Curtiss, Bird & Hassager 1976). 
The more sophisticated hydrodynamics of our analysis, represented by the use of 
resistance tensors (2 .4 ) ,  indicates that the Weissenberg hypothesis (N, = 0 )  is not 
valid generally, however. 

6. The coefficients for ellipsoids 
In  view of the rather abstract analysis of this paper so far, it  may be worth while to 

give a full solution for a particular particle shape. The ellipsoid is a natural choice here 
since Jeffery's (1922) solution of the Stokes equations for an ellipsoid is available, and 
in the particular case of a spheroid the answers obtained here can be checked against 
the previous work of Leal & Hinch (1972). The numerical solution presented for non- 
axisymmetric ellipsoids is believed to be new. 

We consider an ellipsoid of semi-major axes (a, b, c )  with unit vectors PO, qo and r0 
along those axes in the reference state. Then, as shown by Batchelor (1970a), the 
important tensors (with small changes of notation to conform with this paper) are 

Ytp  = 4[J1 + 21,b2cz/(bZ + c2)Z]-fp:p$ + (2 similar terms), 
b2 - c2 

BZpY = E z p : $ r !  + . . . -k . . . , 
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FIGURE 1. Relaxation times for spheroids. (Note that only A@) appears 
the linear relaxation spectrum.) 
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FIGURE 2. Relaxation times for ellipsoids with b = va, c = pa, v = 0.1. 

(Note that A") does not appear in the linear viscoelastic spectrum.) 
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FIGURE 5. Viscosity dependence for spheroids. 

JI(PXP1: - P a p )  (P!P! - V y , )  (&$ + q2.9 (&r8 + !?!$I + . . . + . . . , 
411 

+ 
J 2  + J 2  J 3  + J 3  J1) 

C:pBra = 

where the Ii and Ji  are elliptic integrals defined by Batchelor (1970a). These give 

and 
MSB = diag ($ [J ,  + 21,b2c2/(b2 + c~)~], . . . , . . .). 

As this is an orthotropic body, only two relaxation times and h(3) appear in the 
linear relaxation spectrum (though A(l) does appear in the inversion of K-l). These, 
and the coefficients ci, can now all be computed after a numerical evaluation of the 
integrals I i  and Ji .  The results for spheroids and a non-axisymmetric ellipsoid are 
shown graphically in figures 1-8. Figures 1 and 2 show the relaxation times (with A(l) 
included for completeness) and figures 3 and 4 give the corresponding weight factors 
for the memory function in the linear viscoelastic limit. The viscometric functions for 
second-order-fluid behaviour are shown in figures 5-8. The results for spheroids 
agree with those of Leal & Hinch (1972) (with small corrections) though here we show 
the full shape dependence whereas their parameter D (as defined in Leal & Hinch 
1971) is still shape dependent. Tables 2 and 3 give asymptotic results that may be 
obtained analytically for particles of given volume. These are shown on the figures 
for comparison with the numerical results. Note that, with our choice of reference 
axes, all particle tensors of the second rank that appear are of necessity diagonal. 
Only the diagonal components are given in the tables. 
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FIUURE 6. Normal-stress dependence for spheroids, a = br, b = c. 

We may make the following observations from the results. First, in the linear visco- 
elastic regime, the weights corresponding to the two relaxation times are comparable 
in magnitude for all shapes except axisymmetric ellipsoids, where one vanishes. Thus, 
this case apart, both may be expected to appear physically in the linear relaxation 
spectrum. 

Second, we note that the relaxation times for rods and ‘tapes ’ of the same volume 
differ greatly in size. (We use the term ‘tape’ to describe an ellipsoid whose axes are 
all substantially different in length.) This difference arises from the different rotational 
mobility of each particle, which depends strongly on its length rather than its volume, 
and hence the ease with which it can execute modes of rotation. This can be under- 
stood from slender-body theory (see, for instance, Batchelor 1970b). If we label the 
a, b, c axes 1 , 2 , 3  respectively, then as c B a 9 b the tape may be regarded &s a slender 
body of aspect ratio c / a  = p. Thus the mobility to  rotations about the 1 or 2 axis is 
3[cs/(log (cla) abc)]-l = 3v log (,u)/,u2 as in table 3. Similarly, for rotation about the 
3 axis the mobility is 3(a2c/abc)-l = 3v. The asymptotic results for spheroids may be 
interpreted in the same way. The relaxation time A@) thus corresponds to rotations 
of the ‘long’ axis and to rotations about it. The fact that the former mode has two 
degrees of freedom while the latter has one (or, effectively, none for spheroids) gives 
rise to the inequality of d2) and d3). 
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Finally, in the second-order-fluid regime, the second normal-stress difference 
(represented by A?,) is seen to be negative for all shapes except spheres. The fact that 
it  is non-zero violates the Weissenberg hypothesis, though numerically it is smaller 
than the first normal-stress difference, typically by a factor of about 6. 

7. Nearly spherical particles 
7.1. The shape tensors 

We consider a particle whose external shape is given by a surface S with equation 

r = a( 1 + ef (8,Q1) + e2g(8, Q1) + O(e3)), r2 = x2 + yz + z2, (7.1) 

where e < 1 and 8 and $ are spherical polar angles. By means of a suitable choice for a, 
we demand that the particle volume 

By applying (7.2) a t  O(E)  and O(e2) we have 

V = +ra3. (7.2) 

and 

(7.3) 

Now, it is convenient to decompose f (and similarly 9)  into a sum of spherical surface 
harmonics. We write 

cn 

n=O 
f =  2 f(nb 

where f(n) is a harmonic of order n, i.e. 

V2(rmf(,)) = V2(r--n-y(n,)  = 0. 

The volume constraint ( 7 . 3 ~ )  gives f(o, = 0, and further, f(n) corresponds merely to 
a translation of the 'centre ' (or centre of reaction) of the near-sphere without de- 
formation. We may therefore take f(l) = 0 also. Now, following Barthhs-Biesel & 
Acrivos (1973) we put 

(7.4) 

where TCn) is an nth-rank tensor which is symmetric with respect to interchange of 
its suffixes and traceless under any contraction. The set {T(n)In 2 2) then represents 
the shape of the particle tensorially. 

7.2. The material tensors for near-spheres 

In  order to construct a constitutive equation for a suspension of near-spheres, we 
need the material tensors which appear in (2.5). The problems of finding P, Q, R, 
X and Y correct to O(s) have been treated by Brenner (1964a, b)  and by Taylor & 
Acrivos (1964). The final problem, that of finding Z, is considered here in appendix B. 
Each material coefficient may be expanded as a power series in E .  We write, for instance, 

co = cqo) + scq1) + GCN~) + 0 ( € 3 ) ,  
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so that a t  leading order the particles are spheres and higher-order terms result from 
the deviation from sphericity. We now summarize the near-sphere results to the 
accuracy to which we shall need them: 

Xo = (9/2a2) I + O(S), Yo = 61 + O(E), Po = O(e2), 

Qo = (9/7a)€T(3)+0(€2), R:Fy = 3€(€g8yT(,2B+€a,3yT9) +O(E2) 
and 

where Zql) is given by (B 10) and Z$is by (B 17). Hence by (2.8), 

and so 

By (2.10) 

and 

&y8 = ;(8ay818+ 8a88,4y-#8a/j8y8) +€z:~~8+€22:~~8+o(€3), 

El, = - " ( € j a y  Tg) + EaarT$) + O(S2) 

FO = 3~T(2)  + O(8) .  

co = ZO+O(@), 

m 
C:(& = @$il - gT(2)  1 T(2) - UT(3) 49 : 7'63) = 2 k,Tcn): TCn) 

n=2 
using (B 7) .  The constants k, are given by 

75(24n3-20n2-30n+65)nn! 
2(2n- 1) (2n+ 1 )  (2n+ 3)! ! 

n 2 4 ,  ' 

Finally, from (2.7) we have MO = I +O(E). 

7.3. Form of the constitutive equation 

We are now in a position to find the constitutive equation for a suspension of identical 
nearly spherical particles. We expect that the orientation statistics of such a suspension 
will be approximately uniform for all but the strongest flows, so that we are able to 
relax the restriction of dominant Brownian couples in this section and study moderate 
flow strengths. With the special forms of CO and FO appropriate for spheres, i.e. 

(2.15) shows that 
q y $ 8  = $ ( ~ a y ~ ~ 8 + ~ a 8 8 ~ y - ~ s a ~ 8 y 8 ) ,  e$' = ' 9  

3 ( P )  i j  = 2p@{eF:$)[<RiaRjp)0 + €<Ria Rjp>ll f Z E i j  + $C:y$8Epg[<Ria Rpy Rq8)0 

+ €<RiaRjFRpyRq8)1I + &2C$$8(Ria Rjj3 Rpy Rq8)0 + 0(s3)}* (7*5)  

Thus, using the known forms of No and 4 in the angle averages, we obtain 

= 2p@{$Eij + &EC:~&.E~, + 19[gDF:(,$)d& + &C:$p Eij 

+ & [ ( 4 ' W y E i l  +-O1&yEjl) C : ~ ~ y - # s i j E k l - O 1 k ~ F y C : ~ ~ y ) I  +O(e3)}.  (7.6) 

With the nearly isotropic diffusion coefficient, (3.7) applies and so (7.6) becomes 

where 
d p )  = 2p@{$E+~2T(~) :  T(2)[+DA+KE+&(A.E+E.A-+lA: E)]+O(s3)}, (7.7) 
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and from (3.7) 
9A/Qt + 6DA = 3E. (7.8) 

Equation (7.7) is the same as equation ( 6 )  of Leal & Hinch (1972). Indeed for the 
spheroids which they consider, T(2) = diag (8, - 8 ,  - 4) in the natural axes for the 
spheroid, and so (7.7) reduces exactly to their equation in that case. The rheological 
consequences of the constitutive equation deriving from (7.7) and (7.8) are studied in 
Leal & Hinch's paper. The fact that the same constitutive equation has arisen here 
indicates the following conclusions: f ist ,  only the second harmonic (i.e. the deforma- 
tion corresponding to an ellipsoid) in the distorted sphere shape is important in deter- 
mining the rheology (higher harmonics enter only through the scalar coefficient K ,  
which slightly modifies at  O(e2) the Einstein coefficient Q in the viscosity); and second, 
in this case, the results would be unaffected by a restriction to axial symmetry. The 
behaviour of a suspension of spheroidal near-spheres of suitable aspect ratio will be 
the same as that of any suspension of near-spheres. 

I am greatly indebted to Dr E. J. Hinch for numerous ideas, comments and helpful 
criticisms made during the preparation of this paper. I also thank the Science Research 
Council for financial support while this work was being done. 

Appendix A. Properties of the rotation-matrix formalism 
Expression for orientation-space gradients 

Our aim here is to derive an expression for V in terms of derivatives with respect tq  our 
chosen representation R .  Consider two frames of reference : 

(i) a rotating frame S fixed in the particle; 
(ii) a reference frame So, say S at t = 0. 

Then for a line element rotating with the particle, starting at  xo and rotating to x by 
time t ,  

x .  = R. xo 

Now if dp, is an infinitesimal rotation, 

a aa a .  

d ~ A X = d X = d R . x o = d R . R T . X .  

But x i s  arbitrary, and so we find ddi = - &eiikRku dRju and thus aRiala$hk = - ekimRma. 
Hence iff is any scalar function of orientation, 

(Of ) k  af/adk = €k i j  Ria af/aRja* (A 1)  

At this stage we should be careful to distinguish between derivatives with respect 
to Ria which are constrained in the space of all linear co-ordinate transformations 
to lie in the hypersurface consisting of pure rotations (such as the one above) and those 
which are not so restricted. (The situation here is directly analogous to that in the 
axisymmetric case, where the orientation-space gradient V is given in terms of a unit 
vector p, and is related to the unconstrained gradient operator a/ap by 

v = ( I  - pp). a/ap.) 

We determine the relationship between the two operators by the following technique. 
Given some function f ( R )  define a function f (A) of all possible linear transformations A 
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by f(A) = f(R), where R is (uniquely) derived from A by the polar decomposition 
theorem A = RA, R is a pure rotation, R. RT = I, and A is a pure stretch, A = AT. 
Then the elimination of A determines R in terms of A. 

Now 

and so 

where the projection operator piajs = ( a R i s / a A i a ) A , l .  On performing the differen- 
tiation and making the substitution, we obtain 

p i a j a  = S('ap'ij - R j a R i a ) *  

Now using (A I) and (A 2 )  and simplifying we find 

(Of )k = €k i j  Ria af/aRja, 

where a/aRia is now unconstrained, and thus this formula for V is valid irrespective of 
whether we consider the whole space of possible transformations or the restricted one 
of rotations. 

Orientation-space averages of products of rotations 
In  order to perform various averages, we need to evaluate such integrals as 

R ... Rdr, s orientations 
f(2n) = 

where the integrand consists of the external product of 2n rotation matrices. The 
cases n = 1 , 2 ,  and 3 suffice for our purposes. 

Case n = 1: I(2) = /Ria Rip&. (A 4) 

Since I(2) invohes an integration over all orientations, it is clear that it must be inde- 
pendent of the particular choice of axes in the reference state. Further, it cannot 
depend on the choice of axes in the current configuration. It must therefore be iso- 
tropic with respect to both its Greek and its Latin suffixes, i.e. 

= h8ij6,, for some scalar A. 

Now contracting on i ,  j and u, B, (A 4) gives 

9h = 3 1 dr = 3 x (volume of orientation space) = 3 x a+. 
(That the total volume of orientation space is ama may be seen from, say, an Euler- 
angle parametrizatim: dr = sin ededq5d$). Hence 

I& = I! 3 7 ~  2 'ij'ap. (A 5 )  
Case n = 2. Similarly, 1141 must be expressible as a sum of products of fourth-rank 

isotropic tensors of the two types. So we can write 

'#cla,9ya = ('ij8kl, 8i18jk, ' i k 8 j l ) * d *  ('ap'a8, 'aS'j3y, 'ay'j3S) 

for some 3 x 3 matrix d. Now symmetry demands that the elements of Jlt may be 
of only two types corresponding to the cases where the permutations of ijkl and uBy8 



268 J .  M .  Rallison 

correspond (the diagonal elements of &) and where they do not (the off-diagonal 
elements). Then by means of a suitable contraction and use of (A 5) i t  is easy to show 
that 

Case n = 3. Again we can construct a matrix formulation giving all possible products 
of the 15 isotrcpic sixth-rank tensors of each type. Of the 225 terms that appear, 
however, there are just three types. Analysis similar to that in the n = 2 case is able 
to generate tho corresponding coefficients. 

(i) Where the permutations of the Greek and Latin suffixes are the same the 
coefficient is 16 x 8n2/210. 

(ii) Where they differ in two pairs but are the same in the third the coefficient is 

(iii) Where they differ in all three pairs the coefficient is 2 x 8n2/210. 
- 5 x 8n2/210. 

Appendix B. Determination of Z for near-spheres 

To find Z we must solve the system 

with 
and u = - E . r  on S, u+O as r+co, 
where the particle surface is S and has outward normal n. Then as shown by Batchelor 
(1970a), 

Formulation of the problem as a regular perturbation expansion 

V . a = O ,  V . u =  0 outside S 
(B 1) 1 Q = -pl +p(Vu + (VU)T) 

s i k  = [uijxknj -,u(uink + ukni)] dS (B 2) 1s 
and S = pZ0:  E determines Zo. 

on r = a. So by putting 

and expanding u as a Taylor series about r = a, we obtain a sequence of problems with 
boundary conditions on r = a: 

It is obviously more convenient to replace the boundary condition on S with one 

IU = ~ ( 0 )  + ~ ( 1 )  + 8 2 1 ~ )  + o(q  

u(0) = - E.  r, 1 

with each u("tending to zero as r + co and satisfying the Stokes equations. Further, 
as shown by Batchelor (1970a), the integral in (B 2) may be taken over any surface 
enclosing the particle. With our new formulation this may be taken to be r = a. So 
Zqn) is obtained from the equation 

[u$T)x,nj - ,u(uPfnk + up)ni)] dS. (B 41 
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The zero-order solution 
At this order the particle is spherical. The solution is well known to be 

(B 5) I u(0) = - E . ra5/r5 - Qrr . E . r(a3/r5 - a5/r7), 
p(O) = - 2p x Qa3r. E . r/r5. 

Now as noted by Batchelor (19704,  the stresslet is given by the ( - 3) harmonic in the 
far-field form of the pressure. Thus 

So) = +p47ra3E 
and so 

as expected. 
ZzF$8 = %(says,98 + ' abS j3y -  38aj36y8) 

Application of the reciprocal theorem 
Before proceeding to the O(s) solution, we establish a lemma via the reciprocal theorem. 
Consider the fluid domain bounded by r = a and a surface at  infinity. Then for two 
velocity and stress fields each satisfying the Stokes equations in the domain, vanishing 
sufficiently fast at infinity but satisfying different boundary conditions on r = a, we 
have 

u;ui jn jdS = uiu&njdS. (B 6) 
S I P a  J r = a  

The 'primed' field we choose here is one satisfying u' = - E'. r on r = a for some 
symmetric traceless tensor E'. The solution of the primed problem is then (B 5 )  with 
E replaced by - E'. For the other field we choose the nth-order problem here. Then 
after some straightforward algebra, (B 6) and (B 4) give 

E;,Si;) = - !!!! E' (Ti ufi") + rk uin) - %r, ug) Sik) ds. 
2a 'kJr=. 

Thus as E' is arbitrary and Sn) is symmetric and traceless, we must have 

The usefulness of (B 7) is that it means that we can compute Z(") simply from a know- 
ledge of u(n) at r = a. It is unnecessary to solve the full Stokes equations to fmd u(n) 
everywhere as would be needed for use of (B 4). 

The Jirst-order solution 

We now apply the result (B 7) to find Z(l). From (B 7), (B 3) and (B 5) we have 

Using the expansion (7.4) off in spherical harmonics, we can exploit the orthogonality 
relation for such harmonics, which can be cast tensorially into the following form 
(Brenner 1 9 6 4 ~ ) :  if Pc!tn = ( -)nrn+la 11 ... abr-l(n!)-l then 
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Noting in particular that Po) = 1 , Pi:’ = i ( 3 r .  2 3  r .lr2 - Sii) and 

+ (ai, Sit + 8 similar terms) , (B 9) 1 35ririrkri - 5(Sikrjr,  + 5 similar terms) 
r4 r2 

it is clear from (B 8) that the only contributions to Z(l) are from the second and fourth 
harmonics in f. On substituting we find that 

ZO(1) ajy8 = &[3(Sj ,  TL? + Say Tf; + 8p8 Thy + S,, T$$) - 4(S,,9 T!$ + S,,tT$)] - $$T$,,,p 

(B 10) 
Towards the second-order solution. We can again exploit the reciprocal-theorem 

result (B 7)  to give Z2) when d2) is known on r = a. Unfortunately, (B 3) shows that 
for u(2) on r = a we need au(l)/ar there, and this means that the full u(1) solution is 
required. The derivation of the u(l) solution can be achieved via Lamb’s solution of 
the Stokes equations in spherical harmonics, but the algebra involved is extremely 
tedious and will not be presented in full here: we give only a brief outline of the method 
used. 

The full u(l) solution 

The problem for u(l) is, from (R I ) ,  (B 3) and (B 5 ) )  

with 

and 

To solve this problem we use the technique of Happel & Brenner (1965, $3.2).  This 
involves expanding various functions of the r = a boundary condition in spherical 
harmonics, and then exploiting Lamb’s solution of the Stokes equations. By linearity 
we may consider the solution fmced by each harmonic in f separately, so from now on 
we replace f byf(,, and perform a final summation to obtain the full ~ ( 1 ) .  

In  the notation of Happel & Brenner (1965), we require the expansions 
co m 

(B 12) 
r .  u(1) 
-= 2 X,, ,  -aV.u(l) = I; Y,, r.V~u(1)  = 2 Zm, 

each on r = a, where the X’s, Y’s and 2’s are all spherical harmonics. Here this clearly 
gives 

For the Y, we need to express such functions as r .  E . rf(,)/uz as a sum of spherical 
harmonics. Suitable functions are considered below. 

a m=O m=O m=O 

X ,  = 0 for each m. (B 13) 

rnS3E : VV(r-@+l)f(,)). (B 14) 
(9 

This is a function of degree zero in r and V2(r-(n+2)(i)) = 0, so that it is a harmonic of 
order n + 2. 

(ii) Defining 

and noting that 

r-(n-2) E : VV(m,f(,,) = n(n - 1) r-(n-2) tr (ET(n))lr..zn-2 rll . . . rzn-a 

sh0w.q that this is clearly a harmonic of order n - 2. 
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(iii) Define 

where Sd, the 'symmetric deviator ' of the product, E . Vn), is essentially the same as 
that defined by Barthhs-Biesel & Acrivos (1973) .  This is completely symmetric and 
traceless with respect to any pair of suffixes. So noting that 

shows that the left-hand side is clearly a harmonic of degree n. It is now a straight- 
forward matter to express the Ym in terms of these harmonics. This gives Ym = 0 except 
for m = n - 2, n and n + 2 .  Similarly, to find the Z,, we exploit the fact that V A (rftn)) 
is a vector spherical harmonic of order n, giving 

Z m = O ,  m + n - l , n + l ,  

5a 
2n+ 1 

zn-l = -- rn+2 E : V[r-(n+W A (f(n,r)], 

Lamb's solution for u(l) is then (n) 

m - 2  
u(1) = c V A (r~-l(rn+l)) + V@-(m+l) - ,u2m(2m - 1) r2 VP-(m+l) 

m = l  

l)rP-(m+l) 1 9 

m + l  
pm(2m - + 

* [  

and the relations between the functions x, @ andp and Y and Z are given by Happel & 
Brenner (1965, $ 3 . 2 ) .  

A partial check may be made on these results by calculating (to O(s)) the force and 
couple on the particle. These may then be checked against the results of Brenner 
(1964b) ,  which are derived by a use of the reciprocal theorem. The force on the particle 
is - 47rV(~3p(-~)) and the couple is - 8 n , ~ V ( r ~ ~ ( - ~ ) ) .  Both these relations give the 
same answers for the tensors Q and R (in $ 7 . 2 )  as were given by Brenner. Further, 
the stresslet can be computed from the term. This produces the same answer 
for Zwl) as that obtained in (B 10). 

Finally, we may use this solution for u(I) to compute au(l)/ar on r = a and hence, by 
means of (B 3), find u(2) there. Then we can use (B 7) to give S2) and with extensive 
use of the orthogonality relation (B 9) we find that 

where 

m 

75(24n3 - 20n2 - 30n + 6 5 )  nn ! 
2(2n - 1 )  (2.n -t- 1 )  (2n + 3 )  ! ! 

c ,  = 

The full form of Zw2) has not been found. The contracted versionin (B 17) is shown 
by (7 .6)  to be adequate for our purposes. 
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Appendix C. The second moment of the probability distribution 
In  this appendix we generate a useful exact result for the second moment of JV first 

derived by Prager (1957) for the corresponding axisymmetric particle problem. This 
may be obtained by multiplying (2.17) by RR and integrating over all orientations. 
After two integrations by parts using the divergence theorem, we obtain the result 

a<RSy&8)lat- Qsm<Rrny Rt8) + <Rsy Rm8) ! k t  + BK$a$<Raa Rt$) 

= - ~ ‘ a , y ~ $ 9 < R a ~ R t 6 R p $ R q 9 )  Epq-  ~€aay6~$~BB(RayRt ,Rp$Rq9)Epq,  (c 1) 

where the particle tensor K-l is given by 

Equation (C 1) gives the evolution of (RR) in terms of (RRRR). We note that the 
time derivative represented by the first three terms of (C 1) is essentially a Jaumann 
derivative (as it must be for tensorial invariance). Also, by taking fourth and higher 
moments of (2.17) we could generate a hierarchy of equations for the evolutions of 
averages of products of rotations each involving the next higher average. If E is 
non-zero, then it is necessary to truncate the series a t  some point to obtain a closed 
set of equations. 
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